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Abstract

Motivated by the connection between gauge field topology and the axial
anomaly in fermion currents, I suggest that the fourth power of the naive
Dirac operator can provide a natural method to define a local lattice mea-
sure of topological charge. For smooth gauge fields this reduces to the usual
topological density. For typical gauge field configurations in a numerical sim-
ulation, however, quantum fluctuations dominate, and the sum of this density
over the system does not generally give an integer winding. On cooling with
respect to the Wilson gauge action, instanton like structures do emerge. As
cooling proceeds, these objects tend shrink and finally “fall through the lat-
tice.” Modifying the action can block the shrinking at the expense of a loss of
reflection positivity. The cooling procedure is highly sensitive to the details
of the initial steps, suggesting that quantum fluctuations induce a small but
fundamental ambiguity in the definition of topological susceptibility.
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1. Introduction

One of the great theoretical advances of the 1970’s was the understanding
of the connection between gauge field topology and the axial anomaly [1].
One consequence of this resolution was the realization that a CP violating
parameter can be introduced into the strong interactions. In the context
of unification, this raised the puzzle as to why such a parameter seems to
be absent or at least experimentally quite small. For a recent review, see
Ref. [2]. Fujikawa [3] provided a simple interpretation of these phenomena in
terms of the properties of the fermionic measure in the path integral. Indeed,
this approach provides an elegant derivation of the index theorem relating
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the gauge field topology to the number of zero modes of the Dirac operator.
Witten [4] used large gauge group ideas and effective Lagrangian techniques
to explore the behavior of the theory on this CP violating parameter.

There is a long history of attempts to understand this physics in the
context of lattice gauge theory, now the primary tool for understanding non-
perturbative field theory. The idea of continuity in space time, crucial to
topology, is lost on the lattice. With gauge field space being a direct product
of group elements on discrete space time links, it is always possible to con-
tinuously and locally deform fields between arbitrary configurations. This
issue can be mollified by placing rather strong smoothness restrictions on
the differences of fields at nearby locations, thereby giving rise to a unique
continuum interpolation [5]. However these restrictions can be shown to mu-
tilate fundamental properties such as reflection positivity [6]. Note that many
current simulations use discretizations that violate this condition; the point
is not that these are unacceptable in practice, but rather that any acceptable
rigorous definition of winding number must not exclude formulations that do
satisfy this axiom.

Although the issues are quite old [7], they continue to generate many
recent discussions, i.e. Refs. [8, 9, 10, 11]. Thus I return to this topic with a
new definition of topology based on a generalization of the Fujikawa picture,
wherein the trace of γ5 times the fourth power of the Dirac operator contains
a contribution proportional to the topological charge. The motivation is to
provide a definition that is particularly closely tied to the fermion operator
and the index theorem.

The specific lattice operator I consider is a sum over loops running around
fundamental hypercubes. This provides a local definition of topological
charge that for smooth fields agrees with the continuum definition. On rough
fields typical in a simulation, however, it is not generally integer valued. It
does become so after a cooling procedure to remove the short distance fluc-
tuations.

Throughout I treat the fermionic fields merely as a probe of the gluon
fields. While one could extend the discussion to include dynamical fermions,
in this paper the quarks play no role in the gluon dynamics. Another example
of using powers of the Dirac operator to probe gluonic fields appears in [12].
References [13, 14, 15] go further and suggest using a Dirac operator itself
to dynamically generate the gluon interactions.

Section 2 reviews the argument of Fujikawa relating the anomaly to the
fermionic measure. Section 3 extends this review to a simple derivation of the
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index theorem for smooth fields. Then Section 4 introduces the specific lat-
tice operator under discussion and presents simulations showing that quan-
tum fluctuations blur any discrete topological structures. Section 5 shows
that such structures do become evident under the process of cooling, also
sometimes referred to as smearing, to smooth out short distance fluctua-
tions. Here I also discuss the eventual decay of the instanton structures as
they shrink and fall through the lattice due to lattice artifacts. Section 7
discusses the properties imposed on this operator by reflection positivity and
the importance of the contact term present in the correlators of the density
operator. Section 8 returns to the cooling process and discusses ambiguities
in the topological charge due to a chaotic nature of the initial cooling steps.
This raises the question of whether topological susceptibility is actually a
physical observable, or is there a fundamental uncertainty in its definition. I
illustrate the ideas with simulations based on pure SU(2) lattice gauge the-
ory with the standard Wilson gauge action with coupling β [16]. The final
section summarizes the basic ideas of the paper.

2. Fermions and the anomaly

The chiral anomaly is associated with a flavor singlet transformation on
the fermion fields

ψ → eiγ5φ/2ψ
ψ → ψeiγ5φ/2.

(1)

Here ψ represents the quark fields and has implicit spinor and flavor indices.
Consider the naive kinetic term for massless quarks

ψ /Dψ = ψγµ(∂µ + ieAµ)ψ. (2)

Because γ5 anti-commutes with the anti-hermitian operator /D, massless QCD
naively is invariant under the above transformation. The essence of the chiral
anomaly is that any valid regulator must break this symmetry and leave
behind physical consequences.

A particularly elegant way to understand the connection between the
anomaly and the index theorem is due to Fujikawa [3], who mapped the
problem onto the fermionic measure in the path integral. Under the above
transformation the fermionic measure changes by

dψ dψ → det(eiγ5φ)dψ dψ (3)
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Using the matrix relation detA = exp(Tr log(A)), this reduces to

dψ dψ → (eiφTrγ5)dψ dψ. (4)

If one could say that Trγ5 = 0, the measure would be invariant under this
transformation.

The crucial result is that any valid regulator must modify the naive trace-
lessness of γ5. The details of how this works depends on the specifics of the
regulator, but basically the issue involves reconciling the infinity of the dimen-
sion of space time with the naive relation Trγ5 = 0. A convenient approach
is to use the fermion operator itself to regulate the theory and define

Trγ5 ≡ lim
Λ→∞

γ5e
/D

2

/Λ2

. (5)

With this it is natural to expand in the eigenvectors of /D

/D|ψi〉 = λi|ψi〉 (6)

and define
Trγ5 = lim

Λ→∞

∑

i

〈ψi|γ5|ψi〉e
λ2

i
/Λ2

(7)

Since D is anti-hermitian, its eigenvalues fall on the imaginary axis. The
eigenvectors divide into two classes, those with non-zero λi and zero modes
with λi = 0. The former always appear in complex conjugate pairs since
[ /D, γ5]+ = 0 implies /Dγ5|ψi〉 = −λiγ5|ψ〉. Since |ψi〉 and γ5|ψi〉 have different
eigenvalues, whenever λi 6= 0 they are orthogonal

〈ψi|γ5|ψi〉 = 0. (8)

Such states do not contribute to the above sum for the trace of γ5. Indeed,
this trace only receives contributions from the set of zero modes of the Dirac
operator. Restricted to the space spanned by this set, /D and γ5 commute
and thus can be simultaneously diagonalized. Let n+(n−) be the number of
zero modes with eigenvalue +1(−1) for γ5. Now recall the well known index
theorem that the net winding number ν of the gauge field is given by the
difference of positive and negative chirality zero modes of the Dirac equation.

Trγ5 = n+ − n− = ν. (9)
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Rather than being traceless, the regulated γ5 in the path integral is actually
an operator depending on the gauge field. On making the chiral transforma-
tion in Eq. (1), the path integral picks up a factor eiνφ.

Now consider the theory with a non-vanishing quark mass term mψψ.
Under the rotation of Eq. (1), this is not invariant but becomes

mψψ → m(cos(φ)ψψ + i sin(φ)ψγ5ψ) (10)

Since the transformation is naively a change of variables, one might expect a
theory with a mass term of the form of the right hand side of Eq. (10) would
give the same physics. However this is incorrect since by the above discussion
this change reweights configurations of non-trivial winding. This gives a
physically inequivalent theory. In particular, since the term involving iψγ5ψ
is not invariant under CP, this new theory does not respect this symmetry.

Here I have given the same rotation to each species. With Nf flavors of
fermion, each contributes equally to the measure, thus the factor appearing
in the path integral is actually eiNf νφ and physics is periodic in φ with period
2π/Nf . This leads to the more conventional definition of the angle Θ = Nfφ,
in which physics is periodic with period 2π. One might ask where did the
opposite chirality states go. The are in some sense “beyond the cutoff,”

having been suppressed by the factor e /D2/Λ2

.

3. The index theorem

This approach leads to a simple derivation of the index theorem. Assume
the gauge fields are smooth and differentiable. Writing out the square of the
Dirac operator gives

/D2 = ∂2 − g2A2 + 2igAµ∂µ + ig(∂µAµ) −
g

2
σµνFµν (11)

where [γµ, γν] = 2iσµν . Expanding Trγ5e
/D

2

/Λ2

in powers of the gauge field,
the first non-vanishing term is contained in the fourth power of the Dirac
operator. This involves two powers of the sigma matrices

ν = Trγ5e
/D

2

/Λ2

=
1

2Λ4
Trx,ce

∂2/Λ2

ǫµνρσFµνFρσ (12)

where Trx,c refers to the trace over space and color, the trace over the spinor
index having been done to give a factor of 4. It is the trace over the space
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index that will give a divergent factor removing the Λ−4 prefactor. Higher
order terms go to zero rapidly enough with Λ to be ignored.

The factor e∂2/Λ2

serves to mollify traces over position space. Consider
some function f(x) as representing a a diagonal matrix in position space
M(x, x′) = f(x)δ(x − x′) The formal trace would be TrM =

∫

dxM(x, x),
but this diverges since it involves a delta function of zero. Writing the delta
function in terms of its Fourier transform

e∂2/Λ2

δ(x− x′) =
∫

d4p

(2π)4
eip·(x−x′)e−p2/Λ2

=
Λ4

16π2
e−(x−x′)2Λ2/4 (13)

shows how this “heat kernel” spreads the delta function. This regulates the
desired trace

Trxf(x) ≡
Λ4

16π2

∫

d4xf(x). (14)

Using this to remove the spatial trace in the above gives the well known
relation

ν =
1

32π2
Trc

∫

d4xǫµνρσFµνFρσ =
1

16π2
Trc

∫

d4xFµνF̃µν (15)

where F̃µν = 1
2
ǫµνρσFρσ.

4. A local lattice operator for topology

The previous argument showed that the fourth power of the Dirac oper-
ator has a close connection to topological charge. To obtain something with
non-vanishing trace, one must multiply γ5 by each of the four space-time
gamma matrices. In the above discussion, these factors were provided by the
square of the σµνFµν term in Eq. (11).

In a lattice formulation, one obtains gamma matrix factors for each
fermion hopping term, and thus can obtain the necessary factors by hop-
ping once in each of the four directions. This suggests one should study
contributions to lattice operators of the form Trγ5 /D4. This leaves open what
lattice Dirac operator to use. With an overlap formulation [17], calculating

Tr γ5e
/D2/Λ2

amounts to a simple counting of zero modes. However the overlap
operator is rather tedious to compute. With the naive lattice discretization,
the fermion operator just involves nearest neighbor hops accompanied with

6



the corresponding gamma matrices. For the free theory in momentum space
this is

/D(p) =
∑

µ

iγµ sin(pµ). (16)

In position space this gives a factor of ±iγµ/2 for hops in the ±µ direction.
With gauge fields present, the hop is accompanied by the corresponding
gauge link field U .

Of course the naive fermion action involves doublers, but for the above
counting one could imagine removing this with a simple numerical factor.
A complication here is that the various doublers have different chiralities.
When some component of momentum is near π, the slope of sin(pµ) in that
direction brings in a minus sign, and the doubler uses an opposite sign for
that particular gamma matrix. Half the doublers use the opposite sign for
γ5 and thus the naive γ5 is actually a non-singlet operator. As such, the

corresponding chiral symmetry is not anomalous and Tr γ5e
/D2/Λ2

explicitly
vanishes.

The simplicity of the naive Dirac operator makes it worth trying to get
around this and consider a new chiral matrix that is closer to a flavor singlet.
In momentum space for free fermions I define

Γ5 = γ5

∏

µ

cos(pµ). (17)

Whenever a component of the momentum is near π, this introduces a minus
sign to compensate for the effective Dirac matrix used by the doubler.

Going back to position space, the factors of cos(pµ) are represented by
averaging hoppings in the ±µ direction. Reintroduce the gauge fields with
insertions of the link variables into these hoppings. Since the order of the
hoppings should not matter, consider the average over all such. Thus our
candidate for the anomalous flavor singlet chiral matrix involves taking γ5

augmented by a hop in each of the four space time directions. These hops
are summed over positive and negative directions and all orderings. The
result is that Γ5 is a non-local operator connecting opposite corners of lattice
hypercubes.

This suggests the candidate operator for measuring topology

q ∝ Tr Γ5 /D4 (18)

with /D being the naive lattice fermion operator. Each term in this construc-
tion involves eight hoppings, four from the Γ5 factor and one from each factor
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Figure 1: The distribution of the lattice winding number defined in the text on a set of
500 SU(2) lattices of size 124 at β = 2.3.

of /D. Because the trace forces the hops to return to the starting site, this
quantity is gauge invariant.

So the final operator I wish to construct is defined on hypercubes. For any
given hypercube, consider all 16 directed hyper-diagonals. For each diagonal,
sum over all four-hop paths along hypercube edges from one end to the other
followed by all four-hop paths back to the starting site. Finally given any
particular path, assign a sign corresponding to the parity of the permutation
of the initial four hops. This is a sum over 242 ∗ 16 Wilson loops.

In practice one need not actually calculate all these loops individually.
Accumulating the forward paths into two matrices, one being the sum and
one being the sum with the sign factor included, the desired sum of loops is
immediately found from the product of the first sum times the adjoint of the
second. Also, each diagonal need be calculated only in one direction since
the reverse is equivalent.

To normalize this construction, consider small smooth fields ask that the
sum give the classical winding number

q → ν =
1

16π2

∫

d4xTrcFF̃ (19)

where Trc refers to a trace over color matrices. The result is that one should
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Figure 2: The average topological charge squared divided by the system volume versus
the linear lattice size at β = 2.3 for lattices of size 84 to 204.

multiply the above sum over Wilson loops by a factor of 1
3∗210π2 . Note that

this is independent of the size of the gauge group.
Because the lattice fields tend to be quite rough, this quantity has no

need to peak at integer values. In Fig. (1) I show the distribution of q over
a set of 500 independent gauge configurations with gauge group SU(2) at a
coupling β = 2.3 on a 124 site lattice.

The average value of q2 should scale with the lattice volume. In Fig. (2)
I show this quantity calculated at β = 2.3 on lattices of size from 84 to 204.
On the 184 lattice, the topological susceptibility per unit volume in lattice
units is (2.8 ± 0.25) × 10−5.

5. Cooling

It has been known for some time that to expose topological structures
in lattice configurations requires some cooling procedure to remove short
distance roughness [7]. A particularly simple process is to loop over the
lattice in a checkerboard manner and replace each link with the group element
which minimizes the total action of the six plaquettes attached to that link.
This can be modified by over or under relaxation, which I will discuss later.
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Figure 3: The winding number as a function of cooling steps for a set of 5 lattices of
size 164 at β = 2.3. Note how it settles into approximately integer values with occasional
jumps between different windings.

Such processes monotonically decrease the total action. In Fig. (3) I show
how the above winding number evolves for 5 independent 164 site lattices
at β = 2.3. Note how the winding tends to fall into discrete values, with
jumps between them as the cooling proceeds further. Indeed, with long
enough cooling the winding always appears to eventually drop to zero. Also
note that the discrete values tend to be somewhat below integers; this is
presumably a lattice artifact which becomes more severe at higher winding
number. Finally, note that the initial relaxation steps appear to be rather
chaotic.

The discrete levels of non-trivial winding can also be seen directly in the
total action. In Fig. (4) I show the evolution of the action for cooling the
same 5 configurations. The classical instanton result for the lattice action is
that these levels should appear at a multiple of 2π2, which seems to be well
satisfied.

To better understand the jumps between levels, it is interesting to look
at the maximum local action associated with a single link. This is plotted in
Fig. (5) for the same 5 configurations. Note the evident peaks at the points
where the winding jumps. Although the total action decreases monotonically,
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Figure 4: The total Wilson action as a function of cooling steps for a set of 5 lattices of
size 164 at β = 2.3. The level portions occur at approximate multiples of the classical
instanton action of 2π2. These are the same lattices as in Fig. 3.

this is not in general true locally. This is because the instanton like structures
can decrease in size with their action being concentrated in a smaller region.
Eventually the structures drop down to the lattice size and collapse “through
the lattice.” This shrinking of topological structures is a lattice artifact. In
particular, the classical continuum theory is conformally invariant with an
instanton action independent of size.

The height of the observed peaks is approximately 0.2. As each link
involves six plaquettes, one can stop the decay by forbidding each plaquette
to be larger than one sixth of that, or something like 0.03. This compares
well with the “admissibility condition” of Luscher [5] which, when obeyed,
allows the gauge fields to be uniquely continued between lattice sites to form
a smooth continuum field. Unfortunately, such a condition has been shown
to be inconsistent with reflection positivity [6].

6. The decay of an instanton

It is perhaps interesting to study the way winding number disappears with
cooling in a more controlled manner. To do this I construct a configuration
that quickly settles into a classical instanton and then watch its evolution

11



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500

maximum single link action, beta=2.3

ac
tio

n

Figure 5: The maximum Wilson action associated with a single lattice link as a function of
cooling steps for a set of 5 lattices of size 164 at β = 2.3. The peaks represent “instantons”
falling through the lattice.

under cooling. For an initial state I start with all links unity and then do a
gauge transformation with gauge function

h(xµ) =
x0 + i~x · ~σ
√

x2
0 + ~x2

(20)

Here I define xµ as the distance of a given site from the center of a hypercube
at the center of the lattice. Since this is just a gauge transformation, this
leaves a configuration which still has vanishing action. As one moves away
from the lattice center the links approach unity everywhere except for those
links crossing the boundary. I now make the action non-trivial by replacing
all links that cross the boundary with unity. With this starting configuration,
I then apply the cooling process.

In Fig. (6) I show the evolution of the action for such configurations under
cooling for various size lattices. In the figure I also indicate 2π2, which is the
action of a smooth classical instanton. Note how the action quickly relaxes
to this value, then gradually decreases while the instanton shrinks and finally
drops to zero. The number of steps for this collapse increases with lattice
size because the initial topology becomes spread over a larger region.
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Figure 6: The evolution of the action under cooling with the initial configuration described
in the text on lattices sizes from 104 to 164. The classical instanton action is marked by
the horizontal line.
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Figure 7: The evolution of the winding number under cooling with the initial configurations
described in the text. The classical anti-instanton winding is marked by the horizontal
line.
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Figure 8: The evolution of the largest action associated with a single link under cooling
with the initial configurations described in the text. The peak represents the instanton
collapsing through the lattice.

Fig. (7) shows the topological winding number during this process. After
the roughness at the boundary smooths out, this quickly drops to near −1,
indicating that the construction actually gives rise to an anti-instanton. The
evolution then remains near unity until the time of the action drop.

Finally, in Fig. (8) I plot the maximum action associated with a single
link during this cooling. As the instanton becomes smaller, the action is
more concentrated and a peak appears just before the collapse. This is an
analogous peak to those appearing in the cooling of equilibrated lattices as
in Fig. (5).

7. Reflection positivity and topological charge

Reference [18] pointed out an interesting property that any local definition
of topological charge must have. Because the underlying operator FF̃ is odd
under time reversal, reflection positivity requires its correlator with itself
at non-vanishing separation to be negative. On the other hand, the square
of its integral over space time must be positive. Therefore in calculating
the square of the topological charge, there is a subtle cancellation between
the positive contact term and the negative contribution from correlations
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Figure 9: The average topological charge squared for SU(2) on a 164 lattice versus β

plotted along with the contact and non-contact contributions separated. As required by
reflection positivity, the non-contact contribution is negative.

at non-vanishing separations. This is a somewhat non-intuitive result that
led Horvath [19, 20] to interpret the typical vacuum state in terms of a
highly crumpled field structure. The separation of the topological charge
into contact and non-contact pieces is shown in Fig. (9).

The negative nature of the correlators of topological charge is a statement
about their average. It is, however, possible for fluctuations to give these
correlators positive contributions on a configuration by configuration basis.
In Fig. (10) I plot the evolution of the non-contact term over a sequence of
105 configurations on a 164 lattice at β = 2.3.

The definition of charge density used here is highly local, involving single
hypercubes. As a consequence, the negative nature of the correlation starts
immediately for adjacent hypercubes. In Fig. (11) I show the correlation
between the charge density on hypercubes separated along an axis by one
and two lattice units.

The cooling process discussed in Section 5 smooths out the fields in a
way that does not maintain the negative nature of this correlation. Indeed,
during the cooling process the non-contact part quickly comes to dominate
the total contribution to the square of the topological charge.
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Figure 10: The non-contact contribution to q2 over a sequence of 105 gauge configurations.
Although the average is negative as required, there are large fluctuations giving a positive
contribution from specific configurations. This figure is using SU(2) on a 164 lattice at
β = 2.3.

At long distances the correlator between charge densities should fall expo-
nentially with the mass of the lightest singlet pseudoscalar meson. For pure
gauge fields, this is a glueball, but with quarks of physical masses present this
will be the eta prime meson. (More precisely, with physical quark masses the
eta prime decays into three pions which give the ultimate asymptotic behav-
ior; I ignore this complication here.) Thus measuring this correlator provides
a route to the eta prime mass which replaces the complexity of separating
connected and disconnected quark diagrams with potentially large statistical
fluctuations.

8. Sensitivity to initial conditions

The charge operator defined above does not give an integer value on a
typical gauge configuration. Indeed, some cooling is necessary to remove
short distance fluctuations before discrete winding numbers are observed.
Empirically with enough cooling any SU(2) gauge configuration appears to
eventually decay to a state of zero action, gauge equivalent to the vacuum.
This is not in general true for larger gauge groups. Indeed, for SU(N) with
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Figure 11: The negative of the correlation of winding number density between adjacent
hypercubes and hypercubes of on axis separation two plotted as a function of the coupling
beta. As required by reflection positivity, the correlation is negative. This plot is for
SU(2) gauge theory on a 164 lattice.

N ≥ 5 there exist non-trivial gauge configurations that are stable minima
under arbitrary small variations of the fields but have nothing to do with
topology. For example, consider all links to be unity except for a few isolated
links with values in the group center nearest the identity, i.e. of form e±2πi/N .
When N is five or more, small deviations from these center elements will raise
the action. Such configurations do not involve gauge field winding, but are
sufficient to give stable non-minimal action states.

Since topological configurations appear to always eventually cool to triv-
iality, using cooling to define winding number requires an arbitrary selection
for cooling time. Modifying the Wilson action can prevent the winding decay.
As discussed earlier, on forbidding the lattice action on any given plaquette
from becoming larger than a small enough number, the peaks seen in Fig (5)
cannot be crossed. Such a condition, however, violates reflection positivity
and arbitrarily selects a special instanton size where the action is minimum.

Cooling time is not the only issue here. While integer winding does
not appear before cooling, note from Fig. (3) that the initial cooling stages
seem quite chaotic. This raises the question of whether the discrete stages
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Figure 12: The topological charge evolution for three different cooling algorithms on a
single β = 2.3 lattice configuration for SU(2) on a 164 lattice.

reached after some cooling might depend rather sensitively on the cooling
algorithm. In Fig. (12) I show the evolution of a single lattice with three
different relaxation algorithms. This lattice is the one in Fig. (3) with the
most negative winding after 50 cooling steps. One algorithm is the same
as used in Fig. (3) where the links are replaced using checkerboard ordering
with the element that minimizes the action associated with that link. This
is done by projecting the sum of staples that interact with the link onto the
group. For the second approach, an under-relaxed algorithm adds the old
link to the sum of the neighborhood staples before projecting onto the new
group element. Finally, an over-relaxed approach subtracts the old element
from the staple sum. The resulting windings not only depend on cooling
time, but also on the specific algorithm chosen.

In an extensive analysis, Ref. [8] has compared a variety of filtering meth-
ods to expose topological structures in gauge configurations. All schemes
have some ambiguities, but when the topological structures are clear, the
various approaches when carefully tuned give similar results. Nevertheless
the question remains of whether there is a rigorous and unambiguous defini-
tion of topology that applies to all typical configurations arising in a simula-
tion. Luscher has recently discussed using a differential flow with the Wilson
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gauge action to accomplish the cooling [11]. This corresponds to the limit of
maximal under-relaxation. This approach presumably still allows the above
topology collapse unless prevented by something like the admissibility con-
dition or the selection of an arbitrary flow time. In addition, if one wishes to
determine the topological charge of a configuration obtained in some large
scale dynamical simulation, it is unclear why one should take the particular
choice of the Wilson gauge action.

The high sensitivity to the cooling algorithm on rough gauge configu-
rations suggests that there may be an inherent ambiguity in defining the
topological charge of typical gauge configurations and consequently a small
ambiguity in the definition of topological susceptibility. It also raises the
question of how smooth is a given definition as the gauge fields vary; how
much correlation is there between nearby gauge configurations? Although
such issues are quite old [7], they continue to be of considerable interest
[22, 23, 25].

As topological charge is suppressed by light dynamical quarks, this is
connected to whether the concept of a single massless quark is well defined
[21]. Dynamical quarks are expected to suppress topological structures, and
the chiral limit with multiple massless quarks should give zero topological
susceptibility with a chiral fermion operator, such as the overlap. However,
with only a single light quark, the lack of chiral symmetry indicates that
there is no physical singularity in the continuum theory as this mass passes
through zero. Any scheme dependent ambiguity in defining the quark mass
would then carry through to the topological susceptibility.

One might argue that the overlap operator solves this problem by defin-
ing the winding number as the number of zero eigenvalues of this quantity.
Indeed, it has been shown [24, 25] that this definition gives a finite result in
the continuum limit. As one is using the fermion operator only as a probe of
the gluon fields, this definition can be reformulated directly in terms of the
underlying Wilson operator [10]. While the result may have a finite contin-
uum limit, the overlap operator is not unique. In particular it depends on
the initial Dirac operator being projected onto the overlap circle. For the
conventional Wilson kernel, there is a dependence on a parameter commonly
referred to as the domain-wall height. Whether there is an ambiguity in the
index defined this way depends on the density of real eigenvalues of the kernel
in the vicinity of the point from which the projection is taken. Numerical
evidence [26] suggests that this density decreases with lattice spacing, but it
is unclear if this decrease is rapid enough to give a unique susceptibility in
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the continuum limit. The admissibility condition also successfully eliminates
this ambiguity; however, as mentioned earlier, this condition is inconsistent
with reflection positivity.

Whether topological susceptibility is well defined or not seems to have
no particular phenomenological consequences. Indeed, this is not a quantity
directly measured in any scattering experiment. It is only defined in the
context of a technical definition in a particular non-perturbative simulation.
Different valid schemes for regulating the theory might well come up with
different values; it is only physical quantities such as hadronic masses that
must match between approaches. The famous Witten-Veneziano relation
[27, 28] does connect topological susceptibility of the pure gauge theory in
the large number of color limit with the eta prime mass. The latter, of course,
remains well defined in the physical case of three colors, but the finite Nc

corrections to topology can depend delicately on gauge field fluctuations,
which are the concern here.

9. Conclusions

I have discussed a particular lattice definition of topological charge density
on the lattice. This is motivated by the index theorem relating the zero
modes of the Dirac operator to the winding of the gauge field. Quantum
fluctuations connected with rough gauge fields generally give a non-integer
value to the overall charge. Cooling schemes can remove these fluctuations,
giving an integer value to the index. However the specifics of the final winding
depend on details of the cooling procedure. Furthermore, on extensive cooling
the topological structures eventually shrink and collapse through the lattice.
These behaviors raise the question of whether there is a fundamental scheme
dependent ambiguity in the definition of topological susceptibility.
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